Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Ethylenedipyridinium dibromidodichloridocadmate(II)

Xiu-Cun Liu, ${ }^{\text {a }}$ Xin-Cheng Liao, ${ }^{\text {a }}$ Chun-Ling Ran, ${ }^{\text {a }}$ Yun-Yin $\mathrm{Niu}^{\mathrm{a}}$ and Seik Weng $\mathbf{N g}^{\mathbf{b} *}$

${ }^{\text {a D Department of Chemistry, Zhengzhou University, Zhengzhou 450052, People's }}$ Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
Correspondence e-mail: seikweng@um.edu.my
Received 8 May 2007; accepted 25 May 2007
Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.014 \AA$; disorder in main residue; $R$ factor $=0.057 ; w R$ factor $=0.179$; data-to-parameter ratio $=19.8$.

The Cd atom in the title compound, $\left(\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2}\right)\left[\mathrm{CdBr}_{2} \mathrm{Cl}_{2}\right]$, is coordinated by four halogen atoms in a tetrahedral geometry. The cation lies on a centre of inversion and the anion about a mirror plane. The halogen atoms on the mirror plane are both disordered between Br and Cl in a ratio of $0.75: 0.25$. The halogen atom in the general position is disordered between Br and Cl in a ratio of $0.25: 0.75$.

## Related literature

For related literature, see: Allen (2002); Kallel et al. (1981); Sato et al. (1986).


## Experimental

## Crystal data

$\left(\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2}\right)\left[\mathrm{CdBr}_{2} \mathrm{Cl}_{2}\right]$
$M_{r}=529.37$
Orthorhombic, Pnma
$V=1710.4(3) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$a=17.955$ (2) $\AA$
$\mu=6.25 \mathrm{~mm}^{-1}$
$b=14.338$ (1) $\AA$
$T=295$ (2) K
$c=6.6437$ (6) $\AA$

## Data collection

Bruker APEX area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.147, T_{\text {max }}=0.574$
(expected range $=0.137-0.535)$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
44 restraints
$w R\left(F^{2}\right)=0.179$
H -atom parameters constrained
$S=1.06$
$\Delta \rho_{\text {max }}=1.77 \mathrm{e}_{\AA^{-3}}$
1564 reflections
79 parameters

8939 measured reflections 1564 independent reflections 1415 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.025$

Table 1
Selected geometric parameters ( $\left(\mathrm{A},{ }^{\circ}\right)$.
Disordered halogen atoms are arbitrarily labelled as Br .

| $\mathrm{Cd} 1-\mathrm{Br} 1$ | $2.470(2)$ | $\mathrm{Cd} 1-\mathrm{Br} 3$ | $2.558(2)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Cd} 1-\mathrm{Br} 2$ | $2.535(2)$ |  |  |
| $\mathrm{Br} 1-\mathrm{Cd} 1-\mathrm{Br}^{\mathrm{i}}$ | $116.4(1)$ | $\mathrm{Br} 1-\mathrm{Cd} 1-\mathrm{Br} 3$ | 105.3 (1) |
| $\mathrm{Br} 1-\mathrm{Cd} 1-\mathrm{Br} 2$ | $106.7(1)$ | $\mathrm{Br} 2-\mathrm{Cd} 1-\mathrm{Br} 3$ | 116.8 (1) |

Symmetry code: (i) $x,-y+\frac{3}{2}, z$.
Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2007).

The authors thank the National Natural Science Foundation of China (grant No. 20671083), the Henan Province Excellent Young Foundation (grant No. 0612002800), Zhengzhou University and the University of Malaya for supporting this work. We thank Central China Normal University for the diffraction measurements.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2141).

## References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
Bruker (2004). SAINT (Version 6.45a) and SMART (Version 6.45a). Bruker AXS Inc., Madison, Wisconsin, USA.
Kallel, A., Bats, J. W. \& Daoud, A. (1981). Acta Cryst. B37, 676-677.
Sato, S., Ikeda, R. \& Nakamura, D. (1986). Bull. Chem. Soc. Jpn, 59, 19811989.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Westrip, S. P. (2007). publCIF. In preparation.

## supplementary materials

Acta Cryst. (2007). E63, m1780 [ doi:10.1107/S1600536807025585]

## Ethylenedipyridinium dibromidodichloridocadmate(II)

X.-C. Liu, X.-C. Liao, C.-L. Ran, Y.-Y. Niu and S. W. Ng

## Comment

The discrete tetrahedral tetrahalidocadmate(II) dianion has been characterized in a number of salts (Cambridge Structural Database, Version 5.28; Allen, 2002); examples of the ammonium salts include, for example, bis(tetramethylammonium) tetrachloridocadmate, bis(tetramethylammonium) tetrabromidomercurate (Sato et al., 1986) and bis(tetramethylammonium) tetraiodidocadmate (Kallel et al., 1981). In the 1,2-ethanedipyridinium salt of the mixed-halogen cadmate, the metal atom is coordinated by four halogen atoms in a tetrahedral geometry; the halogen atoms are disordered (Fig. 1). The cations and anions do not have signification interactions with each other.

## Experimental

The salt was synthesized from the reaction of ethane-1,2-dipyridinium dibromide ( $0.035 \mathrm{~g}, 0.1 \mathrm{mmol}$ ) in methanol ( 5 ml ) and cadmium dichloride $(0.037 \mathrm{~g}, 0.2 \mathrm{mmol})$ in DMF $(10 \mathrm{ml})$. The mixture was set aside for the formation of colourless block-shaped crystals in $40 \%$ yield after several days. CH\&N elemental analysis: Calc. C 27.22, H 2.67, N 5.29\%. Found C 27.89 , H 2.49 , N 5.36\%.

## Refinement

Of the three halogens in the asymmetric unit, one lies in a general position and the other two on a mirror plane. Initial attempts to refine the structure with either three chlorines or three bromines gave unacceptably high $R$-indices (and large peaks/holes). The three halogen atoms were then refined as three $(\mathrm{Br}+\mathrm{Cl})$ mixtures; in one attempt the components had only the same displacement parameters. A second attempt allowed the mixtures to have the same displacement parameters as well as sharing the same site. The second led to a formulation consisting of approximately two Br and two Cl atoms. The use of a special restraint command that fixed the number of Br and Cl atoms as both being exactly two led to the occupancy of Br 1 as nearly 0.25 and that of Br 2 and Br 3 as both nearly 0.75 . In the best disorder model, the halogen in the general position was set to $(0.25 \mathrm{Br}+0.75 \mathrm{C} 1)$; those in the special position were both set to $(0.75 \mathrm{Br}+0.25 \mathrm{C} 1) \cdot$ The anion is $\left[\mathrm{CdBr}_{2} \mathrm{Cl}_{2}\right]^{2-}$, a formulation that is supported by $\mathrm{CH} \& \mathrm{~N}$ elemental analysis. Other formulations led to much larger peaks/holes.

Disorder also affected the cation; the pyridyl ring was refined as a rigid hexagon of $1.39 \AA$ sides. The $\mathrm{C}-\mathrm{C}$ distance was restrained to $1.50 \pm 0.01 \AA$, and the $\mathrm{N} \cdots \mathrm{C}$ distance to $2.45 \pm 0.01 \AA$. The displacement parameters of atoms of the cation were restrained to be nearly isotropic. Carbon-bound H atoms were positioned geometrically ( $\mathrm{C}-\mathrm{H} 0.93$ and $0.97 \AA$ ), and were included in the refinement in the riding model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

In the final difference Fourier map the largest peak was $0.9 \AA$ from C6 and the deepest hole at $0.6 \AA$ from Cl3.

## Figures

Fig. 1. The structure of $\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2}\right]\left[\mathrm{CdBr}_{2} \mathrm{Cl}_{2}\right]$, with displacement ellipsoids drawn at the
 $50 \%$ probability level. The bromine and chlorine atoms are disordered; the halogen atom on the general position is labelled X1 (and the symmetry-related $\mathrm{X} 1^{\text {i }}$ ); those on the special position are labelled X 2 and X 3 . Hydrogen atoms are drawn as spheres of arbitrary radius. [Symmetry code: $\mathrm{i}=x, 3 / 2-y, z$.] Unlabelled atoms in the cation are related to labelled atoms by (1-x, 1-y, $1-z$ ).

## Ethylenedipyridinium dibromidodichloridocadmate(II)

## Crystal data

$\left(\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2}\right)\left[\mathrm{CdBr}_{2} \mathrm{Cl}_{2}\right]$
$M_{r}=529.37$
Orthorhombic, Pnma
Hall symbol: -P 2ac 2n
$a=17.955$ (2) $\AA$
$b=14.338$ (1) $\AA$
$c=6.6437(6) \AA$
$V=1710.4(3) \AA^{3}$
$Z=4$
$F_{000}=1008$
$D_{\mathrm{x}}=2.056 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K $\alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 4134 reflections
$\theta=2.3-27.4^{\circ}$
$\mu=6.25 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, colourless
$0.20 \times 0.20 \times 0.10 \mathrm{~mm}$

## Data collection

Bruker APEX area-detector
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=298(2) \mathrm{K}$
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.147, T_{\text {max }}=0.574$
8939 measured reflections

## Refinement

## Refinement on $F^{2}$

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.179$
$S=1.06$
1564 reflections

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1162 P)^{2}+9.0378 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=1.77 \mathrm{e}^{\AA^{-3}}$

79 parameters
44 restraints
Primary atom site location: structure-invariant direct
$\Delta \rho_{\text {min }}=-1.30$ e $\AA^{-3}$
Extinction correction: none methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

|  | $x$ | $y$ | $z$ | $U_{\text {iso }}{ }^{*} / U_{\text {eq }}$ | Occ. $(<1)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Cd1 | $0.92879(4)$ | 0.7500 | $0.64150(12)$ | $0.0371(3)$ |  |
| Br1 | $0.91363(10)$ | $0.60359(14)$ | $0.4500(3)$ | $0.0702(6)$ | 0.25 |
| Br2 | $0.82923(11)$ | 0.7500 | $0.9121(3)$ | $0.0760(6)$ | 0.75 |
| Br3 | $1.06428(9)$ | 0.7500 | $0.7605(3)$ | $0.0720(6)$ | 0.75 |
| C11 | $0.91363(10)$ | $0.60359(14)$ | $0.4500(3)$ | $0.0702(6)$ | 0.75 |
| C12 | $0.82923(11)$ | 0.7500 | $0.9121(3)$ | $0.0760(6)$ | 0.25 |
| C13 | $1.06428(9)$ | 0.7500 | $0.7605(3)$ | $0.0720(6)$ | 0.25 |
| N1 | $0.5912(2)$ | $0.5361(5)$ | $0.4128(9)$ | $0.069(2)$ |  |
| C1 | $0.6503(3)$ | $0.5331(5)$ | $0.5477(8)$ | $0.075(3)$ |  |
| C2 | $0.7163(2)$ | $0.5795(5)$ | $0.5034(8)$ | $0.056(2)$ |  |
| C3 | $0.7231(2)$ | $0.6288(4)$ | $0.3243(8)$ | $0.055(2)$ |  |
| C4 | $0.6640(3)$ | $0.6318(4)$ | $0.1894(7)$ | $0.053(2)$ |  |
| C5 | $0.5980(2)$ | $0.5854(4)$ | $0.2336(7)$ | $0.055(2)$ |  |
| C6 | $0.5283(5)$ | $0.4733(7)$ | $0.4383(15)$ | $0.080(3)$ |  |
| H1 | 0.6457 | 0.5001 | 0.6675 | $0.090^{*}$ |  |
| H2 | 0.7558 | 0.5775 | 0.5937 | $0.067^{*}$ |  |
| H3 | 0.7673 | 0.6599 | 0.2947 | $0.067^{*}$ |  |
| H4 | 0.6686 | 0.6648 | 0.0695 | $0.064^{*}$ |  |
| H5 | 0.5585 | 0.5874 | 0.1434 | $0.066^{*}$ | $0.096^{*}$ |

Atomic displacement parameters $\left(A^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Cd1 | $0.0328(5)$ | $0.0379(5)$ | $0.0406(5)$ | 0.000 | $0.0018(3)$ | 0.000 |
| Br 1 | $0.0544(10)$ | $0.0715(12)$ | $0.0846(13)$ | $-0.0025(8)$ | $-0.0020(9)$ | $-0.0256(10)$ |
| Br 2 | $0.0685(11)$ | $0.1012(14)$ | $0.0584(10)$ | 0.000 | $0.0344(8)$ | 0.000 |
| Br 3 | $0.0437(9)$ | $0.0825(12)$ | $0.0897(14)$ | 0.000 | $-0.0088(8)$ | 0.000 |
| $\mathrm{Cl1}$ | $0.0544(10)$ | $0.0715(12)$ | $0.0846(13)$ | $-0.0025(8)$ | $-0.0020(9)$ | $-0.0256(10)$ |
| C 22 | $0.0685(11)$ | $0.1012(14)$ | $0.0584(10)$ | 0.000 | $0.0344(8)$ | 0.000 |
| Cl 3 | $0.0437(9)$ | $0.0825(12)$ | $0.0897(14)$ | 0.000 | $-0.0088(8)$ | 0.000 |
| N 1 | $0.033(3)$ | $0.105(6)$ | $0.069(4)$ | $-0.018(4)$ | $-0.009(3)$ | $0.033(4)$ |
| C 1 | $0.057(5)$ | $0.100(7)$ | $0.069(5)$ | $-0.008(5)$ | $-0.006(4)$ | $0.034(5)$ |
| C 2 | $0.025(3)$ | $0.070(5)$ | $0.072(5)$ | $-0.002(3)$ | $-0.008(3)$ | $0.018(4)$ |
| C 3 | $0.032(4)$ | $0.061(5)$ | $0.073(5)$ | $-0.010(4)$ | $0.005(4)$ | $0.011(4)$ |
| C 4 | $0.050(4)$ | $0.054(4)$ | $0.055(4)$ | $-0.010(4)$ | $0.006(4)$ | $0.009(4)$ |
| C 5 | $0.036(4)$ | $0.069(5)$ | $0.059(5)$ | $-0.011(4)$ | $-0.002(4)$ | $0.013(4)$ |
| C 6 | $0.100(7)$ | $0.066(5)$ | $0.074(6)$ | $0.021(5)$ | $-0.016(5)$ | $-0.011(5)$ |

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

| Cd1-Br1 | 2.470 (2) | C2-H2 | 0.9300 |
| :---: | :---: | :---: | :---: |
| $\mathrm{Cd} 1-\mathrm{Br} 1^{\text {i }}$ | 2.470 (2) | C3-C4 | 1.3900 |
| Cd1-Br2 | 2.535 (2) | C3-H3 | 0.9300 |
| Cd1-Br3 | 2.558 (2) | C4-C5 | 1.3900 |
| N1-C1 | 1.3900 | C4-H4 | 0.9300 |
| N1-C5 | 1.3900 | C5-H5 | 0.9300 |
| N1-C6 | 1.453 (12) | C6-C6 ${ }^{\text {ii }}$ | 1.514 (9) |
| C1-C2 | 1.3900 | C6-H6A | 0.9700 |
| C1-H1 | 0.9300 | C6-H6B | 0.9700 |
| C2-C3 | 1.3900 |  |  |
| $\mathrm{Br} 1-\mathrm{Cd} 1-\mathrm{Br} 1^{\text {i }}$ | 116.4 (1) | C4-C3-C2 | 120.0 |
| $\mathrm{Br} 1-\mathrm{Cd} 1-\mathrm{Br} 2$ | 106.7 (1) | C4-C3-H3 | 120.0 |
| $\mathrm{Br} 1-\mathrm{Cd} 1-\mathrm{Br} 3$ | 105.3 (1) | C2-C3-H3 | 120.0 |
| $\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{Br} 2$ | 106.7 (1) | C3-C4-C5 | 120.0 |
| $\mathrm{Br} 1^{1}-\mathrm{Cd} 1-\mathrm{Br} 3$ | 105.3 (1) | C3-C4-H4 | 120.0 |
| $\mathrm{Br} 2-\mathrm{Cd} 1-\mathrm{Br} 3$ | 116.8 (1) | C5-C4-H4 | 120.0 |
| C1-N1-C5 | 120.0 | C4-C5-N1 | 120.0 |
| C1-N1-C6 | 119.9 (6) | C4-C5-H5 | 120.0 |
| C5-N1-C6 | 118.9 (6) | N1-C5-H5 | 120.0 |
| N1-C1-C2 | 120.0 | N1-C6-C6 ${ }^{\text {ii }}$ | 105.8 (10) |
| N1-C1-H1 | 120.0 | N1-C6-H6A | 110.6 |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$ | 120.0 | C6 ${ }^{\text {ii }}-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$ | 110.6 |
| C1-C2-C3 | 120.0 | N1-C6-H6B | 110.6 |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$ | 120.0 | C6 ${ }^{\text {ii }}-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$ | 110.6 |
| C3-C2-H2 | 120.0 | H6A-C6-H6B | 108.7 |
| C5-N1-C1-C2 | 0.0 | C3-C4-C5-N1 | 0.0 |
| C6-N1-C1-C2 | 167.7 (7) | C1-N1-C5-C4 | 0.0 |
| N1-C1-C2-C3 | 0.0 | C6-N1-C5-C4 | -167.8 (6) |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ | 0.0 | C1-N1-C6-C6 ${ }^{\text {ii }}$ | 93.0 (11) |
| C2-C3-C4-C5 | 0.0 | C5-N1-C6-C6 ${ }^{\text {ii }}$ | -99.2 (11) |

Symmetry codes: (i) $x,-y+3 / 2, z$; (ii) $-x+1,-y+1,-z+1$.

Fig. 1


